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It is known that a variety of stable periodic orbits can be created if a weak periodic perturbation is ap-
plied to a deep chaotic state. However, which orbit can be created is unpredictable. Because the period-
icity of a time series can be determined by a Shannon entropy, we suggest that these orbits can be dis-
tinguished by this entropy and we may find the desired periodic orbit if we can further modify the per-
turbation guiding ourselves by this entropy. Thus, the method may provide a goal-oriented scheme for
taming chaos with a weak periodic perturbation. We show theoretically the scheme in three different
models, namely, a modified logistic mapping, a driven Duffing-Holmes oscillator, and a directly modulat-
ed semiconductor laser. The influence of noise is discussed and the efficiency of searching is estimated.

PACS number(s): 05.45.+b, 42.50.Lc

I. INTRODUCTION

Many potentially useful ideas, such as synchronization
chaos and controlling chaos, have been developed in non-
linear dynamics particularly in the past few years. Prac-
tical implementations of these ideas in engineering and
other technological fields have been of general interest
and importance [1]. Indeed, the presence of chaos can be
a great advantage because a variety of periodic motions
can be stabilized in a chaotic attractor as emphasized by
Ott, Grebogi, and Yorke (OGY) [2]. Their method has
been a classical means in the field of controlling chaos [3].
As a feedback method, in response to the dynamics of the
system the OGY method may require a fast feedback
mechanism that may be very complicated. On the other
hand, by introducing a weak periodic perturbation, Brai-
man and Goldhirsch (BG) theoretically illustrate a simple
nonfeedback scheme for creating stable periodic orbits as
an alternative way of controlling chaos [4]. Their method
is very attractive for its simple implementation. Unfor-
tunately a serious weakness exists in the BG method, i.e.,
what kind of orbits can be created is not known at all [3].
Because the BG method is so simple, any possible solu-
tion of the above problem would be of importance. This
paper will explore this possibility theoretically. To have
an answer, a close look at the controlling scheme that is
based on a weak periodic perturbation would be helpful.
Our point is that if we can recognize the status of output
wave forms and then enforce the system toward the
desired output region based on such a recognition, we
may overcome the shortcoming so that a goal-oriented
controlling scheme should be brought out.

The essential point is how to recognize the status of an
output wave form, particularly the periodicity. In the
BG method, the maximum Lyapunov exponent is used to
identify the status of a time series. If chaos is suppressed,
the exponent is negative. On the other hand, a direct ob-
servation of time series (or return map) also can help us.
However, a direct observation of time series makes an au-
tomatic experiment (simulation) difficult or even impossi-
ble. Also a calculation of the Lyapunov exponent re-
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quires a long-time series. Nevertheless, the development
of nonlinear dynamics has brought us several available
quantities for this task. In this paper, we adopt the Shan-
non entropy as an alternative choice of characterization.
To the people of nonlinear dynamics, Shannon entropy is
used for the characterization of the ergodicity of the dy-
namics. Then one may think an evaluation of Shannon
entropy also requires a long time series. However, to
determine the periodicity, it is not necessary to use a long
time series as shown below. Since we can further modify
the perturbation, guided by the Shannon entropy we may
find the desired periodic orbit. In the following we will
present our searching scheme in detail. We will demon-
strate the proposed scheme in three different models in-
cluding a modified logistic mapping, a driven Holmes-
Duffing oscillator, and a directly modulated semiconduc-
tor laser. By these examples, the efficiency of searching
as well as the influence of noise will be discussed.

II. OUTLINE OF THE SEARCHING SCHEME

We first summarize our searching procedure.

(1) Choose a physical quantity for observation, say
X (2); pick up the values of N successive maxima, i.e.,
{X;}(i=1,2,3,...,N) after transient.

(2) Sort these N maxima by their values and count the
number of {X;}] appearing in each group, say
N, j=12,...,M). (We assume that these N maxima
are divided into M groups.) After this, calculate the
probability of the /th group P, by dividing N, with the to-
tal number N(/=1,2,...,M). We determine the Shan-
non entropy by these P;.

(3) Guided by the value of Shannon entropy, we intro-
duce (or modify) an external weak periodic perturbation
to search the desired periodic orbit. Next, we give the
detail. The first point is: why maxima. The reasons are
as follows.

(1) It can be understood that the acquisition of succes-
sive maxima from a time series converts a continuous
time series into a discrete one. In a real situation, the
finite sampling rate in data acquisition also leads to a
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discrete time series.

(2) Not less common, we pick up the maxima of a con-
tinuous time series since a peak detector is available even
in hardware.

(3) A maximum requires a zero time derivative, i.e.,
dX(t)/dt =0, so such a sampling will form a special Poin-
caré section.

(4) The time difference between two successive maxima
shows the time scale inherent in the system and reveals
some physical characteristics of the system.

(5) By such a definition, we obtain a faster way in cal-
culating the entropy in comparison with previous works
[5].

The second point is: what kind of Shannon entropy.
The Shannon entropy H is defined as

M
=— 3 P,log,P; (unit:bit) , 1)
1=1

where P, and N are defined as in procedure (2) shown
above. This Shannon entropy represents the average in-
formation coded in the data by the system [6]. Here it
serves as an indicator of periodicity. The entropy value
of an arbitrary wave form with periodicity up to 6 is
shown in Fig. 1 where the typical wave form within one
cycle is shown in the box. A period-1 pulse will be with
H =0 while an irregular wave form shows a large H.
Note that a period-m orbit can be further distinguished.
Furthermore, one can set the conditional statement in the
program to meet a particular value of the Shannon entro-
py for searching the desired periodic region. Because a

3.0 T T T T T T
[ ]
L ]
i °
20 + e i
° ° 4
3 i .
o
S ° [ § .
f
c
«©
N L]
2 M Mo i
1.0 + ° ° o PR
[ ] [}
L ]
[ ]
i '
0.0 & 1 1 1 1 R 1 1
0] 1 2 3 4 5 6

Periodicity

FIG. 1. The values of Shannon entropy at different periodici-
ties. A wave form within one circle is shown in the box for il-
lustration (see text).

complicated wave form has a large H, we can use the
Shannon entropy rather than the maximum Lyapunov
exponent to indicate the complexity of waveforms. For
searching the desired periodic orbit this way is rather
efficient. This leads to our third point: why the Shannon
entropy. It should be noted that if a nonchaotic state is
chosen initially, then only simple dynamic behavior is ob-
served. This answers the concern: why chaos is necessary.
The appearance of chaos is very important to the BG
method. Chaos is a very complex structure in phase
space and it is so sensitive that a variety of periodic
motions may be created by a weak periodic perturbation.

Indeed, the entropy here is a resolution-dependent
quantity. A resolution parameter is needed to classify
these maxima since even in numerical simulations to have
exactly the same two maximum values is difficult. This
may not be a defeat. In turn, the resolution used here
provides a simple way of handling the effect of noise.
Since the proposed scheme is supposed to be implement-
ed in real systems, its dependence on noise should be of
concern. Since it is a searching method, it is demanding
to estimate the efficiency of searching. In Sec. III, we will
illustrate these points by examples.

We make a short summary and outline the possible ex-
tension. The method does not require model equation in
advance. In real cases, one can measure the Shannon en-
tropy to indicate the complexity of the wave form. At
first, one can take three to four trials to determine the en-
tropy in a nearby region, and drive the system toward the
region of low entropy. One can repeat this procedure
and gradually guide the system away from chaos and to-
ward the desired periodic region. By this guidance, we
would not need to search the whole parameter space.
Also because it is the periodic region to be searched, one
only needs to accumulate some data for calculating the
entropy. Such a searching scheme should be easy to im-
plement in experiments and can be automated. We will
provide our experimental work in the near future.

III. DEMONSTRATION

To demonstrate the proposed scheme, we use a
modified logistic mapping as the first model. The model
mapping is as follows:

Xp+1=rx,(1=x,)—Ap, +7§, , 2)
Yn1=ry,(1=y,) . (3)

Here, Eq. (3) is a logistic mapping and is only used for the
generation of a stable periodic signal. For Eq. (2), a fully
developed chaos occurs at r; =4.0 when we set the per-
turbation intensity A=0 and the noise intensity n=0 [7].
In Eq. (2), £, is a number within [0,1] which is chosen
from a uniform random number generator. After tran-
sient, the y, shows a stable period-2 signal at r,=3.33.

. Let us use this simple period-2 signal as a perturbation.

The effect of periodic perturbation is shown in Fig. 2(a)
where only 50x, (n=3950-4000) are used for making
the bifurcation diagram. One can see that the fully
developed chaos is suppressed and transformed into vari-
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perturbation intensity A

ous dynamic states for different A. The corresponding di-
agram of Shannon entropy is shown in Fig. 2(b). (Here
the maxima are simply the x, and only 50 data are used
to evaluate the entropy.) To explore the dependence of
noise, we set 770. By Fig. 2(c) where 7=0.01, one can
see the change. Though this noise-induced change does
affect our searching scheme, by adjusting the resolution
range this effect can be reduced. As an illustration, for
A=0.7, we vary the noise intensity from O to 0.1 and cal-

noise intensity 77

resolution range, the periodic orbit cannot be well recog-
nized and even leads to failure. This can be seen clearly
by the regime with 7 larger than the value indicated by
the down arrow |. This special value indicates the upper
limit of the tolerance of noise for the characterization
scheme proposed here.

Next we present another demonstration using a model
of the Duffing-Holmes oscillator [8],

culate the corresponding Shannon entropy. Figures 2(d), d? d 1 2
2(e), and 2(f) are for the resolution ranges with 0.01, 0.03, dtzy +8:17y —0.5y(1—y%)
and 0.05, respectively. [As a note, the resolution range
used in Fig. 2(b) is less than 107%.] Indeed, for a smaller =f cos(wt)+r f cos(r,ot) , (4)
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FIG. 4. The entropy distribution diagram of 7200 perturbed
states for the Duffing-Holmes oscillator. This distribution is ob-
tained based on Fig. 3(b).

where §=0.15 and ®=0.8 and f=0.23. If r, =0, by this
parameter setting the oscillator shows chaos. Next we
vary r; from 0.3 to 0.7 and r, from O to 0.6. (The total
number of perturbed states is 7200.) The maximum
Lyapunov exponent is determined as shown in Fig. 3(a)
where the region with the negative maximum Lyapunov
exponent is shown with dotted points. We take a smaller
region and calculated the Shannon entropy to represent
the dynamics. (Here 700 data of maximum points are
used to determine the entropy.) In such a two-
dimensional phase diagram of entropy, various symbols
are used to show different entropy value ranges. One can
see that a variety of dynamic states has been created, [see
Fig. 3(b)]. Next for this Fig. 3(b), we count the oc-
currence of perturbed states at various entropy values.
By dividing the total number of states (here 7200), we
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derive a distribution diagram as shown in Fig. 4. Here
only a few low-period orbits indicated by the down ar-
rows | can be found. Most of the orbits have larger en-
tropy values. One can realize that the proposed search-
ing scheme would not succeed if the desired periodic or-
bit cannot be created. If in the beginning we set the per-
turbation (i.e., 7; and r,) randomly, how quickly can we
find the desired orbit? Since the probability of finding the
desired orbit is proportional to the area occupied by the
orbit, Fig. 4 may provide us with the efficiency of search-
ing.

As a final example, we take a semiconductor laser mod-
el [9] for the technical interest. Usually this model is
rewritten in terms of two normalized, dimensionless den-
sities N and P for a theoretical discussion and the set of
rate equations is as follows:

d I _yN—8
TN =T NI (5)
TP%P=I¥—__-§—(1—5P)P—P+BN , 6)
I()=I,+1,sin2wf,,t)+r I, sin2rrof,t), (]

where § and € are two dimensionless parameters, I, is
the threshold current of the semiconductor laser, I is the
injection current, 7, and 7, are the electron and photon
lifetime respectively, and B is the spontaneous emission
factor. To generate high-speed pulse signals, we usually
modulate the injection current in the form of Eq. (7) with
r; =0, where I, is the bias current, I,, is the modulation
current, and f,, is the modulation frequency. In
simulation, we set I,/Iy,=1.5, 7,=6ps, 7,=3 ns,
B=5.0X107°, §=0.692, and £¢=1.0X10"* as in Ref.
[9]. For I,, /1,,=0.55 and f,, =0.8 GHz, chaos appears
if r; =0.

The temporal characteristics of the laser model in a
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FIG. 6. Two-dimensional state diagram
with a second modulation index of amplitude

r; and frequency 7, as controlled variables. In
(a) the dotted region is with a negative
Lyapunov exponent; in (b) the filled circle
points are of H(P)=<2, the dotted represents
2(H(P)<2.5, the crossed shows 2.5 <H(P)
<3, and the black points are for H (P) > 3.
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wide range of parameters can be described by a bifurca-
tion diagram in terms of the peak photon density (photon
peaks [9]) as shown in Fig. 5(a) where f,, =0.8 GHz. For
simplicity, we only present the simulation that occurs
along the forward sweeping direction of modulation
current in Fig. 5(a). (The direction is indicated by the ar-
row —.) The phase of the maximum Lyapunov exponent
is shown in Fig. 5(b). It can be seen that even for the
period-1 pulses, different maximum Lyapunov exponents
are possible. A time series with a negative maximum
Lyapunov exponent does not mean that its wave form is
simple. Thus a measure of the Lyapunov exponent can-
not tell us how close we are to a desired periodic orbit.
We reinterpret the bifurcation diagram in Fig. 5(c) in
terms of the Shannon entropy. (Here 250 data of max-
imum points are used.) One can see the periodicity clear-

0.08

o

o

-
T

distribution P(H)
g
f

0.02

SN
1 2 3 4 5
Shannon entropy H (bit)

0.00

FIG. 7. The entropy distribution diagram of 40000 per-
turbed states for a directly modulated semiconductor laser.
This distribution is obtained based on Fig. 6(b).
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ly. Next by varying the amplitude and frequency of the
second modulation r; and r,, we can obtain a phase dia-
gram as shown in Fig. 6(a) where the dotted region has a
negative maximum Lyapunov exponent. The appearance
of dotted regions indicates the suppression of chaos. Fig-
ure 6(b) shows the corresponding entropy diagram. It
can be understood that there are many paths for arriving
at the periodic region we want. To estimate the efficiency
of searching, we derive at a distribution diagram. (The to-
tal number of perturbed states is 40 000). As seen by Fig.
7, a low-period orbit (such as a period-1 pulse) is difficult
to create here. However, some low-period orbits do exist.
In Fig. 8, we show how taming chaos can be achieved
based on a weak periodic perturbation. Typical chaotic
spiking is shown in Fig. 8(a). After taming with a weak
perturbation, periodic spiking is created as shown in Fig.
8(b).

IV. CONCLUSION

In summary, a simple scheme for searching the desired
periodic orbits in chaos has been shown. We have exer-
cised our scheme in three different models. The effect of
noise and the searching efficiency have been discussed.
Our scheme provides a simple way toward a goal-
oriented scheme of taming chaotic dynamics with a weak
periodic perturbation.

It should be emphasized that the controlling scheme
that is based on a weak periodic perturbation is very
efficient and simple. With the help of Shannon entropy,
one can further improve it. This success is rooted in the
choice of entropy as a measure of the periodicity and a
relational parameter in the conditional statement of
searching program. Certainly, if the desired orbit cannot
be created, the searching scheme proposed here does not
work. The efficiency of searching can be estimated by the
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distribution diagram described above. The paper
presented here may be recognized as a simple extension
of information theory in the characterization of nonlinear
dynamic systems and it should provide an appealing ap-
proach in controlling chaos.
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